ANALISIS *DISPLACEMENT* PADA JEMBATAN *STEEL BOX GIRDER* TERHADAP PENGGUNAAN *LEAD RUBBER BEARING*

Analysis of Displacement on Steel Box Girder Bridges on The Use of Lead Rubber Bearing

Syadza Ardhia Rihada Tulai'sy1*), Untoro Nugroho1

¹ Universitas Negeri Semarang, Gunungpati, Semarang 50229 *)Korespondensi: <u>syadzaardhia@students.unnes.ac.id</u>

ABSTRAK

Dalam konstruksi gedung dan jembatan, terdapat teknologi berupa sistem isolasi seismik yang bertujuan untuk meredam gempa. Salah satu jenis isolasi seismik yang sedang banyak diaplikasikan di Indonesia adalah Lead Rubber Bearing (LRB). Lead Rubber Bearing memiliki kapasitas redaman yang tinggi berkemampuan untuk mengembalikan struktur pada posisi semua setelah gempa berakhir. Analisis menggunakan MIDAS Civil berdasarkan arah X (longitudinal), arah Y (lateral) dan arah Z (vertikal) dan hasil Factory Production Control (FPC) Test. Analisa dilakukan pada 3 (tiga) sampel LRB, yaitu 1P, 2J dan 3J yang berada di bawah jembatan tipe Steel Box Girder. Faktor yang memengaruhi nilai displacement seismik pada analisis ini adalah dimensi LRB dan spektrum respons seismik. Pada permodelan menggunakan MIDAS Civil, nilai displacement seismik Sampel 1P pada arah X = 8,68 mm, arah Y = 0,6 mm dan arah Z = 121,45 mm. Pada Sampel 2J, arah X = 6,23 mm, arah Y = 6,5 mm dan arah Z = 92,53 mm. Pada Sampel 3J, arah X = 6,90 mm, arah Y = 0,27 mm dan arah Z = 110,72 mm. Pada analisis FPC Test, nilai displacement seismik pada Sampel 1P dari 141,01 mm hingga -141,01 mm. Pada Sampel 2J, dari 134,01 mm hingga -134,01 mm. Pada Sampel 3, dari 136,00 mm hingga -136,01 mm.

Kata kunci: displacement, lead rubber bearing, steel box girder, factory production control test

ABSTRACT

In building and bridge construction, there is a seismic isolation technology that being widely applied in Indonesia is Lead Rubber Bearing (LRB). LRB haveing high damping capacity and capable of returning the structure to its original position after the earthquake. Analysis using MIDAS Civil based on the X direction (longitudinal), Y direction (lateral) and Z direction (vertical) and the results of Factory Production Control (FPC) Test. Analysis was on 3 LRB samples, that's 1P, 2J and 3J which are under the Steel Box Girder bridge. Factors that influence the seismic displacement value in this analysis are the dimensions of the LRB and the seismic response spectrum. In MIDAS Civil, the seismic displacement value of Sample 1P in the X direction = 8.68 mm, Y direction = 0.6 mm and Z direction = 121.45 mm. In Sample 2J, X direction = 6.23 mm, Y direction = 6.5 mm and Z direction = 92.53 mm. In Sample 3J, X direction = 6.90 mm, Y direction = 0.27 mm and Z direction = 110.72 mm. In the FPC Test analysis, the displacement value for Sample 1P was from 141.01 mm to -141.01 mm. In Sample 2J, from 134.01 mm to -134.01 mm. In Sample 3, from 136.00 mm to -136.01 mm.

Keywords: displacement, lead rubber bearing, steel box girder, factory production control test

PENDAHULUAN

Dalam konstruksi gedung dan jembatan, terdapat inovasi berupa sistem isolasi seismic (*seismic base isolation*) yang berfungsi untuk meredam beban gempa. Pada jembatan, gagasan isolasi seismik merupakan lapisan fleksibel di pilar jembatan (*pier*) dan kepala jembatan (*abutment*) yang memisahkan jembatan dari dampak gerakan seismik. Salah satu jenis isolasi seismik yang sedang banyak diaplikasikan di Indonesia adalah *Lead Rubber Bearing* (LRB), yang secara umum terdiri dari plat baja (*steel plate*), karet laminasi (*vulcanized rubber*), dan inti timah (*lead core*) [1].

Lead Rubber Bearing (LRB) terdiri atas beberapa lapisan karet alam atau sintetik yang mempunyai rasio redaman kritikal (*critical damping*) antara 2-5%. Dalam meningkatkan kapasitas redaman (*damping capacity*), material karet dicampur dengan *extrafine carbon block, oil* atau resin, serta bahan lainnya sehingga dapat meningkatkan redaman sekitar 10-20% pada saat *shear strain* 100%. Untuk dapat menahan beban vertical, lapisan karet diberi lempengan baja yang dilekatkan ke lapisan karet dengan sistem vulkanisir [2].

Perangkat *Lead Rubber Bearing* secara umum memiliki 2 (dua) mekanisme reduksi gempa, yaitu fungsi material *lead* untuk menaikkan redaman (*damping*) pada keseluruhan struktur dan fungsi fleksibilitas karet untuk menaikkan periode struktur. Saat terjadi *displacement, Lead Rubber Bearing* berfungsi meredam beban yang didapat oleh struktur jembatan. Beban tersebut dibagi menjadi beban tekan dan beban dinamis yang diperoleh dari penggunaan jembatan secara berkala sehingga memengaruhi kualitas dan umur jembatan.

Menurut Conrad [3], struktur *steel box girder* mempunyai karakteristik menarik untuk diamati karena kekakuannya menahan lentur yang diperlukan pada jembatan bentang menengah ke bentang panjang hingga pada jembatan dengan bentang panjang yang melengkung.

Lead Rubber Bearing adalah bahan anti seismic yang terdiri dari lapisan karet dan lapisan baja, dengan bagian inti (*lead core*) berongga yang diisi timah (*lead*). LRB melindungi struktur massif dari kerusakan akibat gempa bumi, meningkatkan safety factor jembatan, dan menggantikan elastrometrik dan sistem angkur, serta tidak memerlukan perawatan [4]. Barone [5] menjelaskan bahwa pada *Lead Rubber Bearing* memiliki beberapa karakteristik, yaitu:

- 1. Memiliki redaman sedang (20% 35%),
- 2. Kapasitas pemusatan ulang yang tinggi,
- 3. Dapat digunakan kembali setelah peristiwa gempa bumi (EQ) karena sifat rekristalisasi dari inti timah (*lead core*).

Jembatan dengan isolasi gempa memiliki frekuensi getaran yang jauh lebih kecil dibandingkan dengan jembatan konvensional dan frekuensi dominan dari gerakan tanah. Akibatnya, percepatan gempa yang bekerja pada jembatan menjadi lebih kecil [6]. Pada periode yang bersamaan, energi gempa pada jembatan ikut berkurang sebagai akibat dari disipasi energi yang terkonsenstrasi di isolator yang sesuai dengan rancangan [7].

Pada penelitian ini, digunakan 2 (dua) studi kasus yaitu Jembatan SBG di Kabupaten Brebes dan Jembatan SBG-SIG di Kota Solo. Berdasarkan kedua studi kasus, maka ditentukan faktor yang memengaruhi nilai *displacement* seismik. Kemudian dilakukan analisis nilai displacement seismik berdasarkan permodelan menggunakan MIDAS Civil dan hasil data Factory Production Control (FPC) Test. Setelah dilakukan analisis, maka nilai displacement berdasarkan permodelan dan pengujian dibandingkan untuk mengetahui apakah Lead Rubber Bearing yang digunakan sudah aman untuk digunakan.

METODE

Deskripsi Jembatan

Iembatan SBG di Kabupaten Brebes terletak di Jalan Pangeran Diponegoro, berada pada koordinat 6°52'09.4"S 109°02'03.6"E vang membentang di atas Sungai Pemali. Pada Jembatan SBG di Kabupaten Brebes, struktur *Steel Box Girder* memiliki panjang 110 meter dari total panjang 111,20 meter dengan lebar efektif 11 meter dan dilengkapi satu pilar pada tengah jembatan yang memiliki 3 (tiga) Lead Rubber Bearing di atasnya. Sedangkan Jembatan SBG-SIG di Kota Solo terletak di Jalan Raya Palur, berada pada koordinat 7°33'57.8"S 110°51'41.7"E yang membentang di atas Sungai Bengawan Solo. Sedangkan pada Jembatan SBG-SIG di Kota Solo, struktur Steel Box Girder memiliki bentang 100 meter dari total bentang sebesar 155,10 meter yang dilengkapi dengan 3 (tiga) buah pilar serta 42 buah *Lead Rubber Bearing*.

Spesifikasi Lead Rubber Bearing

Spesifikasi Lead Rubber Bearing pada Jembatan SBG di Kabupaten Brebes

Pada Jembatan SBG di Kabupaten Brebes, *Lead Rubber Bearing* yang digunakan sebagai sampel dengan tipe D700C memiliki spesifikasi sebagai berikut:

Tabel 1 Spesifikasi	Lead Rubber Bearing pada
Jembatan SBG	di Kabupaten Brebes

Data LRB	Material	Ukuran
Top Plate	SM490Y/Equal	800×800×28
Lead Core	Lead 99,9%	Ø 218 × 330
Steel Plate	SS400/Equal	Ø 690 × 9
Rubber Layer	NR 100%	Ø 700 × 10
Vulcanized Plate Upper	SM490Y/Equal	Ø 690 × 20
Countersunk Bolt	8,8/Equal	M20 × 30
Bottom Plate	SM490Y/Equal	800×800×28
Dowel Anchor	S45C/Equal	Ø 60 × 210
Vulcanized Plate Lower	SM490Y/Equal	Ø 690 × 20
Washer	fu 1000 MPa	M30 T8MM
Hexagon Bolt	F10T/Equal	M30 × 100

Sumber : PT. Bukaka Teknik Utama Tbk-2023

Berikut adalah desain tampak atas (**Gambar 1**) dan detail tampak samping (**Gambar 2**) dari LRB tipe D700C yang digunakan.

Gambar 1 Desain *Lead Rubber Bearing* tipe D700C *top plate* (kiri) dan *bottom plate* (kanan) *Sumber : PT. Bukaka Teknik Utama Tbk-2023*

Gambar 2 Detail *Lead Rubber Bearing* tipe D700C *Sumber : PT. Bukaka Teknik Utama Tbk-2023*

Spesifikasi Lead Rubber Bearing pada Jembatan SBG-SIG di Kota Solo

Pada penelitian ini, *Lead Rubber Bearing* pada Jembatan SBG-SIG di Kota Solo yang dijadikan bahan penelitian adalah tipe D700A dengan spesifikasi berikut:

Fabel 2 Spesifikasi <i>Lead Rubber Bearing</i>	pada
Jembatan SBG-SIG di Kota Solo	

Data LRB	Material	Ukuran
Top Plate	SM490Y/Equal	800×800×28
Lead Core	Lead 99,9%	Ø 218 × 270
Steel Plate	SS400/Equal	Ø 690 × 5
Rubber Layer	NR 100%	Ø 700 × 10
Vulcanized Plate Upper	SM490Y/Equal	Ø 690 × 20
Countersunk Bolt	8,8/Equal	M20 × 30
Bottom Plate	SM490Y/Equal	800×800×28
Dowel Anchor	S45C/Equal	Ø 60 × 210
Vulcanized Plate Lower	SM490Y/Equal	Ø 690 × 20
Washer	fu 1000 MPa	M30 T8MM
Hexagon Bolt	F10T/Equal	M30 × 100

Sumber : PT. Bukaka Teknik Utama Tbk-2023

Berikut adalah desain tampak atas (**Gambar 3**) dan detail tampak samping (**Gambar 4**) dari LRB D700A yang digunakan dalam pengujian.

Gambar 3 Desain *Lead Rubber Bearing* tipe D700A *top plate* (kiri) dan *bottom plate* (kanan) *Sumber : PT. Bukaka Teknik Utama Tbk-2023*

Gambar 4 Detail *Lead Rubber Bearing* tipe D700A *Sumber : PT. Bukaka Teknik Utama Tbk-2023*

Pengujian Lead Rubber Bearing

Factory Production Control (FPC) Test

Pada pengujian kontrol produksi pabrik atau *Factory Production Control* (FPC) *Test*, pengujian dilakukan setiap LRB selesai produksi dengan tujuan sebagai kontrol mutu hasil produksi dengan jumlah benda uji minimum 20% dari total volume (*downscale*). Dalam FPC *Test*, pengujian dilakukan dengan melakukan 2 (dua) buah pengujian yaitu uji kekakuan tekan dan uji dinamik kombinasi tekan dan siklik horizontal. Parameter yang digunakan pada pengujian ini berfokus pada kekakuan tekan dan karakteristik horizontal K_b dan ξ_b saat deformasi siklik.

Perbedaan yang paling menonjol antara *Prototype Test* dan *Factory Production Control* (FPC) *Test* adalah pada uji kekakuan kompresi dan karakteristik horizontal Kb dan ξ b (atau Qd dan K₂) saat deformasi siklik. Dimana saat uji kekakuan kompresi, dalam \pm 30% dari hasil pengujian tidak ada cacat yang terlihat. Sedangkan pada karakteristik horizontal saat deformasi siklik, nilai yang dihasilkan haruslah berada dalam \pm 20% dari nilai yang diisyaratkan [5].

Pengujian dilakukan dengan cara memasang LRB pada alat pengujian (**Gambar 5**) untuk melakukan uji kekakuan tekan.

Gambar 5 Alat pengujian Factory Production Control (FPC) Test Sumber: Dokumentasi Pribadi

Kemudian alat uji mengkombinasi uji tekan dengan mesin seismik (**Gambar 6**) yang akan bergerak ke arah kiri dan kanan sejauh 140 mm di kedua sisi untuk mensimulasi gaya seismik pada uji dinamik kombinasi tekan dan siklik horizontal.

Gambar 6 Mesin seismik pada alat pengujian Factory Production Control (FPC) Test Sumber: Dokumentasi Pribadi

Pengaruh Seismik

Beban Gempa

Dalam memenuhi nilai *damping* hingga 30%, respons spektrum dapat dihitung dengan menggunakan *mapped peak ground acceleration coefficient* dan *spectral acceleration coefficient* sesuai data tanah yang telah dimiliki [8]. Desain respon spektrum digambarkan dalam grafik berikut.

Gambar 7 Desain Respon Seismik Sumber: [9] - 2014

Kelas Situs

Pembagian kelas situs dan cara penyelidikan tanah berdasarkan nilai N-SPT menurut [10].

SA (Batuan Keras)	:	N/A
SB (Batuan)	:	N/A
SC (Tanah Sangat		
Padat dan Batuan	:	$\overline{N} > 50$
Lunak)		
SD (Tanah Sedang)	:	$15 \le \overline{N} \le 50$
SE (Tanah Lunak)	:	$\overline{N} < 15$
SF (Tanah Khusus)	:	N/A

Nilai tersebut dihitung berdasarkan persamaan berikut:

$$\overline{N} = \frac{\sum_{i=1}^{m} t_i}{\sum_{i=1}^{m} \left(\frac{t_i}{N}\right)} \tag{1}$$

Keterangan:

- t_i = tebal lapisan tanah ke-i
- N_i = nilai hasil uji penetrasi standar lapisan tanah ke-i
- m = jumlah lapisan tanah yang ada di atas batuan dasar

 $\sum_{i=1}^{m} t_i = 30$ meter

Faktor Situs

Untuk penentuan respon spektra di permukaan tanah, diperlukan suatu faktor amplifikasi untuk *Peak Ground Acceleration* (PGA), periode pendek (T = 0,2 detik) dan periode 1 detik. Nilai-nilai F_{PGA} , F_a , dan F_v untuk berbagai jenis tanah dapat dilihat sebagai berikut.

Tabel 3 Faktor Amplifikasi untuk PGA danPeriode 0,2 detik (FPGA/Fa)

	Fakto	r Amplifil 0,2	kasi untul 2 detik (F _P	k PGA dan _{GA} /F _a)	Periode
Kelas Situs	$PGA \leq 0,1$ $S_s \leq 0,25$	PGA = 0,2 $S_s = 0,5$	PGA = 0,3 $S_{s} = 0,75$	PGA = 0,4 $S_{s} = 1,0$	PGA > 0,5 S₅≥ 1,25
Α	0,8	0,8	0,8	0,8	0,8
В	1	1	1	1	1
С	1,2	1,2	1,1	1	1
D	1,6	1,4	1,2	1,1	1
Е	2,5	1,7	1,2	0,9	0,9
F	SS	SS	SS	SS	SS

Sumber: [10] - 2016

Tabel 4 Faktor Amplifikasi untuk Periode 1Detik (Fv)

	Fakt	or Amplifika	asi untuk I (Fv)	Periode 1	Detik
Kelas Situs	S _s ≤ 0,1	$S_{s} = 0,2$	S _s = 0,3	$S_{s} = 0,4$	Ss≥ 0,5
Α	0,8	0,8	0,8	0,8	0,8
В	1	1	1	1	1
С	1,7	1,6	1,5	1,4	1,3
D	2,4	2	1,8	1,6	1,5
E	3,5	3,2	2,8	2,4	2,4
F	SS	SS	SS	SS	SS

Sumber: [10] - 2016

Respon Spektrum Rencana

Perumusan respon spektra adalah sebagai berikut:

$$A_S = F_{PGA} \times PGA \tag{2}$$

$$S_{DS} = F_a \times S_s \tag{3}$$

$$S_{D1} = F_{\nu} \times S_1 \tag{4}$$

Keterangan:

As	= koefisien percepatan puncak muka tanah
----	--

- F_{PGA} = faktor amplifikasi getaran terkait percepatan pada batuan dasar
- PGA = Peak Ground Acceleration
- S_{DS} = nilai spektra permukaan tanah pada periode pendek (T = 0,2 detik)
- F_a = faktor amplifikasi periode pendek
- S_s = parameter respons spektra percepatan gempa untuk periode pendek (T = 0,2 detik) dengan probabilitas terlampaui 7% dalam 75 tahun
- S_{D1} = nilai spektra permukaan tanah pada periode 1,0 detik
- F_v = faktor amplifikasi untuk periode 1 detik (F_v)
- S1 = parameter respons spektra percepatan gempa untuk periode 1,0 detik mengacu pada Peta Gempa Indonesia dengan probabilitas terlampaui 7% dalam 75 tahun

Koefisien Respon Gempa Elastik

$$T_0 = 0.2 T_s$$
 (5)

$$T_s = \frac{S_{D1}}{S_{DS}} \tag{6}$$

Keterangan:

- T₀ = waktu awal bangunan merespon beban gempa (*s*)
- T_s = waktu tempuh untuk periode pendek (*s*)

HASIL DAN PEMBAHASAN

Faktor yang Memengaruhi Nilai Displacement terhadap Penggunaan Lead Rubber Bearing

1. Dimensi Lead Rubber Bearing

Dimensi dari sebuah *lead rubber bearing* menentukan redaman (*damping*) dan perpindahan (*displacement*) pada saat proses perencanaan model. Berdasarkan studi kasus yang dianalisis, berikut adalah perbandingan dari desain *lead rubber bearing* yang digunakan.

Tabel 5 Data LRB pada Sampel yang	
Diberlakukan Proses Downscale	

Data I DD	Jı	ımlah	Ukurai	n (mm)
Data LKD	1P	2J & 3J	1P	2J & 3J
Lead Core	1	1	330	270
Steel Plate	15	17	9	5
Rubber Layer	16	18		
Steel Box Girder	1	2	110 meter	100 meter

Sumber : PT. Bukaka Teknik Utama Tbk-2022

Berdasarkan tabel di atas, perbedaan pada LRB terdapat pada:

- a. Perbedaan tinggi *lead core* memengaruhi besarnya disipasi energi seismik sekaligus meningkatkan hampir semua kriteria sistem isolasi seismik, termasuk kekakuan di bawah beban dan dalam struktur jembatan.
- b. Jumlah dan tinggi *steel plate* memberikan beban aksial di sekitar *lead core* dan kapasitas kekakuan aksial.
- c. Jumlah *rubber layer* dapat meningkatkan struktural karena perilaku seismiknya meningkatkan kualitas redaman, kekakuan fleksibel, dan kemampuan disipasi energi.
- d. Struktur *steel box girder* merupakan beban superstruktur yang diterima LRB sehingga memengaruhi nilai *displacement*.

2. Spektrum Respon Seismik

Desain respon spektrum diperoleh dari peta gempa yang dikalikan dengan suatu faktor amplifikasi sesuai keadaan tanah di bawah struktur jembatan. Nilai ini juga yang digunakan dalam proses perencanaan *Lead Rubber Bearing*.

a. Jembatan SBG di Kabupaten Brebes

Berdasarkan [10], klasifikasi jenis tanah dan profil lapisan-lapisan tanah minimal sampai kedalaman 30 meter yang dimulai dari permukaan tanah asli disajikan pada **Tabel 6**. Setelah dilakukan perhitungan, maka kelas situs akan didapatkan.

Tabel 6 Data Penyelidikan Tanah dan Kelas Situs pada *Abutment* Jembatan SBG di Kab. Brebes

Lapisan ke- <i>i</i> , <i>N</i> i	Tebal Lapisan, d _i (m)	N-SPT	Rasio Kedalaman, <i>di/Ni</i>	Kelas Situs, di/(di/Ni)
2	2,0	7	0,286	_
3	1,5	10	0,150	-
4	2,0	13	0,154	8,2843
5	2,5	11	0,227	(SE)
6	2,0	39	0,051	-
7	2,0	3	0,667	

8	4,0	4	1,000
9	2,0	5	0,400
10	7,0	25	0,280
12	5,0	12,3	0,407
Jumlah	30,0		3,621

Setelah menentukan kelas situs, nilai percepatan puncak dan spektrum respons di batuan dasar adalah sebagai berikut.

Percepatan Puncak dan Spektrum Respons di Batuan Da	Isar
---	------

PGA 0,233	S _S 0,487	S₁ 0,191

Gambar 8 Nilai Percepatan Puncak dan Spektrum Respons di Batuan Dasar pada *Abutment* Jembatan SBG di Kab. Brebes *Sumber : APLIKASI LINI – 2023*

Dari hasil analisis di atas, maka nilai respon spektrum rencana pada *Abutment* Jembatan SBG di Kabupaten Brebes disajikan pada **Tabel 7** dan **Gambar 9**.

Tabel 7 Nilai Desain Respons Spektrum padaAbutment Jembatan SBG di Kab. Brebes

Site	Α	B	С	D	E
PGA	0,23	0,23	0,23	0,23	0,23
Ss	0,49	0,49	0,49	0,49	0,49
S1	0,19	0,19	0,19	0,19	0,19
FPGA	0,80	1,00	1,20	1,34	1,55
Fa	0,80	1,00	1,20	1,42	1,76
Fv	0,80	1,00	1,61	2,04	3,23
Sms	0,39	0,49	0,58	0,69	0,86
Sm1	0,15	0,19	0,31	0,39	0,62
Sds	0,39	0,49	0,58	0,69	0,86
S _{D1}	0,15	0,19	0,31	0,39	0,62
Ts	0,39	0,39	0,53	0,57	0,72

Gambar 9 Grafik Desain Respons Spektrum pada Abutment Jembatan SBG di Kab. Brebes

b. Jembatan SBG-SIG di Kota Solo

Penentuan klasifikasi jenis tanah dan penentuan kelas situs disajikan pada **Tabel 8**.

DOI: 10.56911/jikv3i2.93

Tabel 8 Data Penyelidikan Tanah dan	Kelas
Situs pada Abutment Jembatan SBG-SIG	di Kota
Solo	

Lapisan ke- <i>i,</i> N _i	Tebal Lapisan, d _i (m)	N- SPT	Rasio Kedalam an, <i>d_i/N_i</i>	Kelas Situs, d _i /(d _i /N _i)
1	2,0	29	0,069	
2	8,0	24	0,333	
3	4,0	41	0,098	
4	2,0	42	0,048	64 47
5	2,0	34	0,050	(\$C)
6	2,0	40	0,050	
7	4,0	56	0,071	
8	6,0	59	0,102	-
Jumlah	30,0		0,465	-

Setelah menentukan kelas situs, nilai percepatan puncak dan spektrum respons di batuan dasar adalah sebagai berikut.

Gambar 10 Nilai Percepatan Puncak dan Spektrum Respons di Batuan Dasar pada *Abutment* Jembatan SBG-SIG di Kota Solo Sumber : APLIKASI LINI – 2023

Dari hasil analisis di atas, maka nilai respon spektrum rencana pada *Abutment* Jembatan SBG di Kota Solo disajikan pada **Tabel 9** dan **Gambar 11**.

Tabel 9 Nilai Desain Respons Spektrum padaAbutment Jembatan SBG-SIG di Kota Solo

Site	Α	B	С	D	E
PGA	0,27	0,27	0,27	0,27	0,27
Ss	0,58	0,58	0,58	0,58	0,58
S1	0,24	0,24	0,24	0,24	0,24
FPGA	0,80	1,00	1,20	1,26	1,35
Fa	0,80	1,00	1,17	1,34	1,56
Fv	0,80	1,00	1,57	1,94	3,08
Sms	0,46	0,58	0,68	0,78	0,90
S _{M1}	0,19	0,24	0,38	0,46	0,73
Sds	0,58	0,58	0,68	0,78	0,90
S _{D1}	0,24	0,24	0,38	0,46	0,73
Ts	0,41	0,41	0,55	0,59	0,81

Gambar 11 Grafik Desain Respons Spektrum pada *Abutment* Jembatan SBG-SIG di Kota Solo

Analisis Displacement dari Lead Rubber Bearing

1. Permodelan MIDAS Civil

a. *Lead Rubber Bearing* pada Jembatan SBG di Kabupaten Brebes (**Sampel 1P**)

Permodelan dilakukan pada keseluruhan struktur Jembatan SBG di Kabupaten Brebes (110 meter), karena keseluruhan struktur merupakan *Steel Box Girder*.

Gambar 12 Posisi *Lead Rubber Bearing* Sampel 1P pada Tampak Atas (kiri) dan Tampak Samping (kanan) Sumber : PT. Bukaka Teknik Utama Tbk-2023

• Permodelan

Jembatan SBG di Kab. Brebes memiliki bentang 110 meter dengan material *Steel Box Girder*. Permodelan dilakukan dengan menggunakan MIDAS Civil 2022 Versi 1.2.

Gambar 13 Permodelan Jembatan SBG di Kab. Brebes menggunakan MIDAS Civil

• Kombinasi Pembebanan

Pada Jembatan SBG di Kabupaten Brebes, kombinasi pembebanan yang digunakan sesuai [8].

Tabe	l 10 Nilai Kom	binasi Pem	bebanar	ı pada
	Jembatan SI	3G di Kab. B	Brebes	

Kombinasi Pembebanan	Beban (kN)	Kombinasi Pembebanan	Beban (kN)
KUAT 1	57427	EKSTREM 2	12898
KUAT 2	38529	DAYA LAYAN 1	19264
KUAT 3	28233	DAYA LAYAN 2	9072
KUAT 4	13755	DAYA LAYAN 3	10193
KUAT 5	15439	DAYA LAYAN 4	5670
EKSTREM 1	14818	FATIK TD	960

Dalam menentukan nilai *displacement*, kombinasi KUAT 1 digunakan karena memiliki beban terbesar untuk mewakili nilai lainnya.

• Pola Goyangan (*Shape Mode*)

Pada analisis ini, digunakan *mode shape* 1 sebagai acuan karena dianggap cukup fleksibel terhadap satu kesatuan elemen struktur.

Gambar 14 Pola Goyangan Mode 1 yang terjadi pada Jembatan SBG di Kab. Brebes

• Perpindahan (Displacement)

Nilai perpindahan *node* pada bagian *Lead Rubber Bearing* diambil dari kombinasi dengan hasil paling maksimum dan kritis setelah dibebani dalam arah memanjang jembatan.

Dari permodelan, digunakan nilai *Displacement Global* dari arah X (longitudinal), arah Y (lateral) dan arah Z (vertikal) dan *node* diambil dari elemen yang berada di atas sampel LRB dan daerah sekelilingnya seperti yang tertera pada Gambar 15.

Gambar 15 Daerah Tinjauan sesuai Posisi *Lead Rubber Bearing* Sampel 1P

Berdasarkan hasil permodelan, didapatkan nilai *displacement* sebagai berikut.

Tabel 11 *Displacement Bearing* dari Pembebanan Arah Sumbu X, Sumbu Y, dan Sumbu Z pada Jembatan SBG di Kab. Brebes

Nodo	Lood	DX	DY	DZ
Noue	Loau	(mm)	(mm)	(mm)
82	KUAT 1	0,7718	0,8917	71,6655
83	KUAT 1	4,0820	0,2717	113,4657
84	KUAT 1	4,3054	0,0164	115,8132
85	KUAT 1	4,4197	0,2170	117,7658
87	KUAT 1	0,7724	0,8765	71,4288
89	KUAT 1	0,7721	0,8842	71,5471
91	KUAT 1	0,9092	0,8946	78,6881
92	KUAT 1	5,0462	0,2478	123,8703
93	KUAT 1	5,3076	0,0484	126,4133
94	KUAT 1	5,4466	0,2371	128,5337
276	KUAT 1	6,4814	0,8695	101,8126
278	KUAT 1	6,4814	0,8772	101,9151
280	KUAT 1	6,6512	0,8816	98,2665
281	KUAT 1	19,4555	0,2292	101,7510
282	KUAT 1	20,2062	0,0804	104,0870
283	KUAT 1	20,7056	0,2730	105,8463

Node	Load	DX	DY	DZ
		(mm)	(mm)	(mm)
285	KUAT 1	6,6513	0,8664	98,0610
287	KUAT 1	6,6512	0,8741	98,1637
289	KUAT 1	6,8005	0,8807	94,2338
290	KUAT 1	19,2598	0,2505	94,0720
440	KUAT 1	11,9326	0,7954	15,4561
550	KUAT 1	18,6703	0,8768	76,3703
551	KUAT 1	27,2588	0,3618	136,1736
659	KUAT 1	30,0440	0,0788	345,2856
660	KUAT 1	29,8405	0,2174	347,7091
661	KUAT 1	29,7786	0,3703	349,6889
769	KUAT 1	16,1971	0,4910	493,2978
771	KUAT 1	13,9712	0,8912	211,5997
879	KUAT 1	8,9572	0,8895	167,4114
881	KUAT 1	8,9573	0,8972	167,5358
1341	KUAT 1	2,7552	1,4923	121,8277
1342	KUAT 1	15,9720	0,1962	107,6351
1343	KUAT 1	2,9010	1,2514	106,7895
1344	KUAT 1	3,1672	1,4201	100,4295
1345	KUAT 1	15,2352	0,1708	83,6576
1346	KUAT 1	3,6211	1,1740	82,8679
1347	KUAT 1	3,8957	1,3209	78,1486
1348	KUAT 1	14,1933	0,1433	63,3483
1349	KUAT 1	3.6487	1.0771	64.3297
1350	KUAT 1	3.9667	1.1981	66.4311
1351	KUAT 1	12.7026	0.1139	61.2268
1352	KUAT 1	6.0949	0.9899	62.0916
1353	KUAT 1	5.6091	1.0823	63.2063
1354	KUAT 1	10.7442	0.0825	53,2776
1355	KUAT 1	9 0191	0.9146	54 0388
1356	KUAT 1	8.4545	0.9800	54.5132
1925	KUAT 1	1 6746	0 4756	94 4788
1926	KUAT 1	1 9640	0 4747	99 3311
1927	KUAT 1	2 2 6 4 7	0.4726	103 5925
1928	KUAT 1	2 5747	0.4693	107 2526
1929	KUAT 1	2,8920	0 4690	110 3045
1930	KUAT 1	3 2144	0.4673	112 7437
1931	KUAT 1	3 5402	0.4641	114 5691
1932	KUAT 1	3 8676	0 4642	115 7833
1933	KUAT 1	4 1947	0.4626	116 3900
1934	KUAT 1	4 4927	0.4592	116,3300
1935	KUAT 1	4 7836	0.4591	115 9636
1936	KUAT 1	5 0661	0.4572	115,0008
1937		5 3 3 9 1	0.4536	113,0000
1038	KUAT 1	5,0071	0,4532	111 6754
1920	KUAT 1	5,0014	0.4511	109 3557
194.0	KUAT 1	6.0784	0 4473	106 6351
1940	KUAT 1	6 2 8 8 2	0.4467	103 5414
1047	KUAT 1	6 4 7 9 4	0.4.4.5	100 1020
21744	KUAT 1	12 7000	0,4445	208 4202
2111	KUAT 1	12,7000	0,7000	206,4202
2112	KUAT 1	11.8427	0,7019	200,3454
2113	NUAL 1	11,0457	0,7017	203,9379
Rata	a-rata	8,6828	0,005	121,4536

Berdasarkan permodelan, nilai rata-rata *displacement* seismik yang dihasilkan pada arah X (longitudinal) adalah 8,68 mm, arah Y (lateral) adalah 0,60 mm dan arah Z (vertikal) adalah 121,45 mm.

DOI: 10.56911/jikv3i2.93

b. *Lead Rubber Bearing* pada Jembatan SBG-SIG di Kota Solo (**Sampel 2J**)

Pada analisa ini, LRB sampel 2J berada pada SBG dengan bentang 40 meter.

Gambar 16 Posisi *Lead Rubber Bearing* Sampel 2J pada Tampak Atas (kiri) dan Tampak Samping (kanan) *Sumber : PT. Bukaka Teknik Utama Tbk-2023*

• Permodelan

Lead Rubber Bearing Sampel 2J berada di bawah struktur *Steel Box Girder* bentang 40 meter dan di atas *Pier* 2. Permodelan dilakukan dengan menggunakan MIDAS Civil 2022 Versi 1.2.

Gambar 17 Permodelan Jembatan SBG-SIG di Kota Solo menggunakan MIDAS Civil

• Kombinasi Pembebanan

Pada Jembatan SBG-SIG di Kota Solo, kombinasi pembebanan yang digunakan sesuai [8].

Tabel 12 Nilai Kombinasi Pembebanan padaJembatan SBG-SIG bentang 40 Meter di Kota Solo

Ì	Kombinasi	Beban	Kombinasi	Beban
	Pembebanan	(kN)	Pembebanan	(kN)
	KUAT 1	10001,24	EKSTREM 2	3178,19
	KUAT 2	1593,84	DAYA LAYAN 1	5516,18
	KUAT 3	1478,28	DAYA LAYAN 2	1312,48
	KUAT 4	1925,44	DAYA LAYAN 3	6651,31
	KUAT 5	1186,5	DAYA LAYAN 4	1431,72
	EKSTREM 1	3020,69	FATIK TD	1103,34

Digunakan kombinasi KUAT 1 karena memiliki beban terbesar diambil untuk mewakili nilai lainnya.

• Pola Goyangan (*Shape Mode*)

Pada analisis ini, *mode shape* 1 digunakan sebagai acuan karena dianggap cukup fleksibel terhadap satu kesatuan elemen struktur.

Gambar 18 Pola Goyangan Mode 1 yang terjadi pada Jembatan SBG-SIG bentang 40 Meter di Kota Solo

• Perpindahan (Displacement)

Dari permodelan, digunakan nilai *Displacement Global* dari arah X (longitudinal), arah Y (lateral) dan arah Z (vertikal) dan *node* diambil dari elemen yang berada di atas sampel LRB dan daerah sekelilingnya seperti pada Gambar 19.

Gambar 19 Daerah tinjauan sesuai Posisi *Lead Rubber Bearing* Sampel 2J

Nilai *displacement* yang didapatkan dari permodelan disajikan pada Tabel 13.

Tabel 13 *Displacement Bearing* dari Pembebanan Arah Sumbu X, Sumbu Y, dan Sumbu Z pada Jembatan SBG-SIG di Kota Solo Bentang 40 Meter

Nodo	Load	DX	DY	DZ
Noue	Luau	(mm)	(mm)	(mm)
31	KUAT 1	0,05100	0,30800	7,97200
148	KUAT 1	0,25800	0,63100	60,89600
152	KUAT 1	0,24700	0,71500	62,10500
154	KUAT 1	0,27500	0,42200	58,34700
155	KUAT 1	0,41500	0,75200	67,42800
211	KUAT 1	11,15500	0,63100	192,46700
212	KUAT 1	11,14000	0,39300	187,76200
214	KUAT 1	1,54200	0,72500	84,28200
215	KUAT 1	1,54600	0,56100	81,62600
286	KUAT 1	3,17800	0,51600	85,91800
287	KUAT 1	3,48300	0,8110,0	90,15900
288	KUAT 1	20,54400	0,61600	201,28600
289	KUAT 1	20,47300	0,37800	196,30800
291	KUAT 1	3,48400	0,7110,0	88,31900
292	KUAT 1	3,46300	0,53700	85,53100
806	KUAT 1	0,84200	0,28000	67,94900
807	KUAT 1	0,83900	0,24300	67,35800
808	KUAT 1	0,83700	0,20100	66,78100
809	KUAT 1	7,51200	0,18400	162,37900
810	KUAT 1	1,05500	0,29600	71,33400
811	KUAT 1	1,05100	0,25700	70,70500
812	KUAT 1	1,04800	0,21400	70,09200
836	KUAT 1	2,53100	0,25400	80,43300
837	KUAT 1	16,34700	0,16700	194,74200
838	KUAT 1	2,83300	0,32900	81,92100
839	KUAT 1	2,81700	0,29200	81,17200
840	KUAT 1	2,80200	0,24800	80,44000
841	KUAT 1	17,69000	0,16800	194,74400
842	KUAT 1	3,10500	0,31900	81,40500

Node	beol	DX	DY	DZ
Noue	LUau	(mm)	(mm)	(mm)
846	KUAT 1	3,36900	0,30500	80,38000
847	KUAT 1	3,35000	0,26700	79,64200
848	KUAT 1	3,33100	0,22200	78,92100
849	KUAT 1	20,35300	0,18100	191,17800
913	KUAT 1	21,65400	0,18700	187,63800
922	KUAT 1	4,31800	0,23100	71,39700
923	KUAT 1	4,29300	0,19400	70,74600
924	KUAT 1	4,26900	0,15100	70,10900
925	KUAT 1	25,35700	0,20400	170,26300
1131	KUAT 1	3,53400	0,35400	74,26800
1132	KUAT 1	3,53600	0,31500	74,64900
1133	KUAT 1	3,77000	0,36000	72,37100
1142	KUAT 1	4,58500	0,34900	60,76900
1143	KUAT 1	4,74200	0,39800	56,51900
1144	KUAT 1	4,74700	0,36000	56,80100
1145	KUAT 1	4,88400	0,40900	52,22500
1146	KUAT 1	4,89000	0,37000	52,48100
1147	KUAT 1	5,00400	0,41900	47,60800
1148	KUAT 1	5,01000	0,38000	47,83700
1149	KUAT 1	5,09900	0,42800	42,69700
1150	KUAT 1	5,10700	0,38900	42,89800
1151	KUAT 1	5,16800	0,43700	37,52200
1152	KUAT 1	5,17800	0,39800	37,69600
1153	KUAT 1	5,20900	0,43300	32,07300
1154	KUAT 1	5,22100	0,39600	32,23800
1159	KUAT 1	5,21600	0,43400	29,29400
1160	KUAT 1	5,23000	0,39600	29,44500
1161	KUAT 1	5,20900	0,43100	23,64300
1214	KUAT 1	17,09400	0,16300	203,95800
1217	KUAT 1	17,22200	2,31700	203,95800
1218	KUAT 1	17,11900	2,56600	201,34100
1219	KUAT 1	17,05200	0,29000	198,86500
1220	KUAT 1	16,99900	0,47000	195,91200
1274	KUAT 1	0,06400	0,08900	0,32100
Rat	a-rata	6,2339 <mark>2</mark>	6,50390	9 <mark>2,5321</mark> 3

Berdasarkan tabel di atas, nilai rata-rata displacement seismik yang dihasilkan pada arah X (longitudinal) adalah 6,23 mm, arah Y (lateral) adalah 6,50 mm dan arah Z (vertikal) adalah 92.53 mm.

c. Lead Rubber Bearing pada Jembatan SBG-SIG di Kota Solo (Sampel 3J)

Pada analisa ini, Lead Rubber Bearing Sampel 3J memiliki bentang 60 meter dengan material Steel Box Girder.

Gambar 20 Posisi Lead Rubber Bearing Sampel 3J pada Tampak Atas (kiri) dan Tampak Samping (kanan)

Sumber : PT. Bukaka Teknik Utama Tbk-2023

Permodelan

Lead Rubber Bearing Sampel 3J berada di bawah struktur Steel Box Girder bentang 60 meter dan di atas Pier 2. Permodelan dilakukan dengan menggunakan MIDAS Civil 2022 Versi 1.2.

Gambar 21 Permodelan Jembatan SBG-SIG di Kota Solo menggunakan MIDAS Civil

Kombinasi Pembebanan

Pada Jembatan SBG-SIG di Kota Solo dengan bentang 60 meter, kombinasi pembebanan yang digunakan sesuai [8].

Tabel 14 Nilai Kombinasi Pembebanan pada Jembatan SBG-SIG bentang 60 Meter di Kota Solo

Kombinasi Pembebanan	Beban (kN)	Kombinasi Pembebanan	Beban (kN)
KUAT 1	10831,2	EKSTREM 2	2524,8
KUAT 2	1755	DAYA LAYAN 1	5370,6
KUAT 3	1864,8	DAYA LAYAN 2	6564,48
KUAT 4	1221	DAYA LAYAN 3	927,36
KUAT 5	484,5	DAYA LAYAN 4	886,5
EKSTREM 1	2269,05	FATIK TD	664,95

Kombinasi pembebanan yang digunakan pada a analisis di Jembatan SBG-SIG di Kota Solo bentang 60 meter adalah KUAT 1.

Pola Goyangan (Shape Mode)

Dengan menggunakan mode shape 1 sebagai acuan, satu kesatuan elemen struktur sudah bisa dianggap cukup fleksibel.

Gambar 22 Pola Goyangan Mode 1 yang terjadi pada Jembatan SBG-SIG bentang 60 Meter di Kota Solo

Perpindahan (Displacement)

Dari permodelan, digunakan nilai Displacement *Global* dari arah X (longitudinal), arah Y (lateral) dan arah Z (vertikal) dan node diambil dari elemen yang berada di atas sampel LRB dan daerah sekelilingnya.

Rubber Bearing Sampel 3J

Nilai *displacement* yang didapatkan dari permodelan disajikan pada **Tabel 15**.

Tabel 15 Displacement Bearing dari Pembebanan Arah Sumbu X, Sumbu Y, dan Sumbu Z pada Jembatan SBG-SIG di Kota Solo Bentang 60 Meter

Nodo	Load	DX	DY	DZ
Noue	Loau	(mm)	(mm)	(mm)
1	KUAT 1	0,10048	0,17304	0,40725
6	KUAT 1	68,40834	0,00000	0,00000
97	KUAT 1	0,49563	0,50916	59,23988
99	KUAT 1	0,53304	0,20326	58,09419
100	KUAT 1	0,66015	0,53258	67,12794
101	KUAT 1	3,38390	0,35659	171,66248
102	KUAT 1	3,42460	0,07168	170,85839
104	KUAT 1	0,67471	0,43931	66,52064
105	KUAT 1	0,70083	0,25100	65,89518
156	KUAT 1	8,46716	0,38810	262,82664
157	KUAT 1	8,50827	0,10685	261,60769
159	KUAT 1	1,82209	0,47194	101,60717
160	KUAT 1	1,84961	0,28975	100,74710
161	KUAT 1	1,85949	0,21534	100,41380
163	KUAT 1	1,80884	0,54990	102,20336
165	KUAT 1	1,85473	0,25278	100,57736
883	KUAT 1	9,69142	0,01831	152,59008
888	KUAT 1	10,09100	0,06092	150,57136
Rata-rata		6,90746	0,27169	110,71947

Nilai rata-rata *displacement* seismik yang dihasilkan pada arah X (longitudinal) adalah 6,90 mm, arah Y (lateral) adalah 0,27 mm dan arah Z (vertikal) adalah 110,72 mm.

2. Summary Nilai Displacement Seismik dari Permodelan MIDAS Civil

Tabel 16 Rekapitulasi Nilai *Displacement* Seismik dari Permodelan menggunakan MIDAS

		Civil			
Nama	Bentang Valas		Jenis Perhitungan		
Sampol	SBG	Situe	MIDAS Civil (mm)		
Samper	(<i>m</i>)	Situs	DX	DY	DZ
1P	110	SE	8,68	0,60	121,45
2J	40	50	6,23	6,50	92,53
3J	60	30	6,90	0,27	110,72

Gambar 24 Grafik Nilai *Displacement* Seismik dari Permodelan MIDAS Civil

Berdasarkan tabel dan grafik di atas, pada Sampel 1P, nilai displacement seismik LRB hasil permodelan MIDAS Civil pada arah X (longitudinal) adalah 8,68 mm, arah Y (lateral) adalah 0,6 mm dan arah Z (vertikal) adalah 121,45 mm. Struktur SBG memiliki bentang 110,0 meter dengan kelas situs SE (tanah lunak). Pada Sampel 2J, nilai *displacement* seismik LRB hasil permodelan MIDAS Civil pada arah X (longitudinal) adalah 6,23 mm, arah Y (lateral) adalah 6,5 mm dan arah Z (vertikal) adalah 92,53 mm. Struktur SBG memiliki bentang 40 meter dengan kelas situs SC (tanah keras, sangat padat, dan batuan lunak). Pada Sampel 3J, nilai displacement seismik LRB hasil permodelan MIDAS Civil pada arah X (longitudinal) adalah 6,90 mm, arah Y (lateral) adalah 0,27 mm dan arah Z (vertikal) adalah 110,72 mm. Struktur SBG memiliki bentang 60 meter dengan kelas situs SC (tanah keras, sangat padat, dan batuan lunak).

3. Factory Production Control (FPC) Test

a. *Lead Rubber Bearing* pada Jembatan SBG di Kabupaten Brebes (**Sampel 1P**)

Gambar 25 Grafik Uji Kapasitas Dinamik (Seismik) pada Sampel 1P Sumber : PT. Bukaka Teknik Utama Tbk-2023

Tabel 17 Hasil Pengujian Kapasitas Dinamik
(Seismik) pada Sampel 1P

		itilai	Satuali
Maximum Positive Displacement	d+	141,01	mm
Maximum Negative Displacement	d-	- 141,01	mm

Sumber : PT. Bukaka Teknik Utama Tbk-2023

Berdasarkan grafik siklik dan tabel hasil pengujian FPC di Lab Inhouse PT. Bukaka, batas maksimum nilai *displacement* yang dapat diredam LRB Sampel 1P adalah sebesar 141,01 mm ke arah positif dan 141,01 mm ke arah negatif.

b. *Lead Rubber Bearing* pada Jembatan SBG-SIG di Kota Solo (**Sampel 2J**)

Gambar 26 Grafik Uji Kapasitas Dinamik (Seismik) pada Sampel 2J *Sumber : PT. Bukaka Teknik Utama Tbk-2023*

Tabel 18 Hasil Pengujian Kapasitas Dinamik(Seismik) pada Sampel 2J

Calibrated Force	Simbol	Nilai	Satuan
Maximum Positive Displacement	d+	134,01	mm
Maximum Negative Displacement	d-	- 134,01	mm

Sumber : PT. Bukaka Teknik Utama Tbk-2023

Berdasarkan grafik siklik dan tabel, batas maksimum nilai *displacement* yang dapat diredam LRB Sampel 2J adalah sebesar 134,01 mm ke arah positif dan 134,01 mm ke arah negatif.

c. *Lead Rubber Bearing* pada Jembatan SBG-SIG di Kota Solo (**Sampel 3J**)

Gambar 27 Grafik Uji Kapasitas Dinamik (Seismik) pada Sampel 3J Sumber : PT. Bukaka Teknik Utama Tbk-2023

Tabel 19 Hasil Pengujian Kapasitas Dinamik(Seismik) pada Sampel 3J

Calibrated Force	Simbol	Nilai	Satuan
Maximum Positive Displacement	d+	136,00	mm
Maximum Negative Displacement	d-	- 136,01	mm

Sumber : PT. Bukaka Teknik Utama Tbk-2023

Berdasarkan grafik siklik dan tabel di atas, batas maksimum nilai *displacement* yang dapat diredam LRB Sampel 1P adalah sebesar 136,00 mm ke arah positif dan 136,01 mm ke arah negatif.

Rekapitulasi nilai *displacement* disajikan pada tabel dan grafik berikut.

Tabel 20 Rekapitulasi Nilai Displacement dariFactory Production Control (FPC) Test

	Dontong		Jenis Perhitungan	
Nama	SBG	Kelas Situs	Factory	
Sampel			Production	
	(111)		Control (FPC)	
			Test (mm)	
10	110.0	SE	141,01	
IP	110,0		- 141,01	
21	40		134,01	
2)		50	- 134,01	
3J	60	SC	136,00	
	60		- 136,01	

Gambar 28 Grafik Nilai Displacement dari Factory Production Control (FPC) Test

4. Perbandingan Nilai Displacement Seismik Menggunakan Permodelan MIDAS Civil dengan Factory Production Control (FPC) Test

Pada penelitian ini, nilai *displacement* seismik dari hasil Factory Production Control (FPC) Test akan menjadi acuan untuk perbandingan dengan hasil permodelan menggunakan MIDAS Civil.

Tabel 21 Perbandingan Nilai DisplacementSeismik dari Permodelan MIDAS Civil danFactory Production Control (FPC) Test

Factory Production Control (FPC) Test						
5	(5			Nilai D	ient	
Nama Sampo	Bentang SB((<i>m</i>)	Kelas Situs	Μ	FPC Test (mm)		
			DX	DY	DZ	141.01
1 P	110	SE	8,6 8	0,6 0	121,4 5	- 141,01
			62			134,01
2J	40		3	6,5	92,53	-
		- SC	0			134,01
	60	20	0.2	0,2	110,7	136,00
3J	3J 60		6,9	7	2	-
		-				

Gambar 29 Grafik Perbandingan Nilai Displacement Seismik dari Permodelan MIDAS Civil dan Factory Production Control (FPC) Test

Pada Sampel 1P, struktur SBG memiliki bentang 110,0 meter dengan kelas situs SE (tanah lunak).

DOI: 10.56911/jikv3i2.93

Nilai displacement seismik berdasarkan permodelan MIDAS Civil pada arah X (longitudinal) adalah 8,68 mm, arah Y (lateral) adalah 0,6 mm dan arah Z (vertikal) adalah 121,45 mm. Nilai displacement maksimum berdasarkan hasil FPC Test berada dalam rentang dari 141,01 mm untuk nilai positif sampai -141,01 mm untuk nilai negatif. Nilai displacement berdasarkan permodelan MIDAS Civil tergolong AMAN karena masih berada dalam range nilai displacement vang diisyaratkan Factory Production Control (FPC) Test. 2. Pada Sampel 2J, struktur SBG memiliki bentang 40 meter dengan kelas situs SC (tanah keras, sangat padat dengan batuan lunak). Nilai displacement seismik berdasarkan permodelan MIDAS Civil pada arah X (longitudinal) adalah 6,23 mm, arah Y (lateral) adalah 6,5 mm dan arah Z (vertikal) adalah 92,53 mm. Nilai displacement maksimum berdasarkan hasil FPC Test berada dalam rentang dari 134,01 mm untuk nilai positif sampai -134,01 mm untuk nilai negatif. Nilai displacement berdasarkan permodelan MIDAS Civil tergolong AMAN karena masih berada dalam range nilai displacement yang diisyaratkan Factorv *Production Control (FPC) Test.* 3. Pada Sampel 3J, struktur SBG memiliki bentang 60 meter dengan kelas situs SC (tanah keras, sangat padat dan terdapat batuan lunak). Nilai displacement seismik berdasarkan permodelan MIDAS Civil pada arah X (longitudinal) adalah 6,90 mm, arah Y (lateral) adalah 0,27 mm dan arah Z (vertikal) 110,72 Nilai *displacement* adalah mm. maksimum berdasarkan hasil FPC Test berada dalam rentang dari 136,00 mm untuk nilai positif sampai -136,01 mm untuk nilai negatif. Nilai displacement berdasarkan permodelan MIDAS Civil tergolong AMAN karena masih berada dalam *range* nilai displacement diisyaratkan maksimum yang Factory Production Control (FPC) Test.

KESIMPULAN

1. Dimensi Lead Rubber Bearing memengaruhi besarnya disipasi energi, kekakuan fleksibel, dan kualitas redaman (damping), sedangkan pada struktur Steel Box Girder memengaruhi berat superstruktur yang akan diterima LRB dalam menentukan nilai displacement. Kelas situs pada spektrum respon seismik memengaruhi nilai spektra permukaan tanah pada periode 1 detik (S_{D1}) saat proses iterasi atau perencanaan model Lead Rubber Bearing. Pada proses iterasi tersebut memerlukan nilai displacement asumsi yang akan menjadi nilai displacement akhir apabila proses iterasi berhasil.

- 2. Hasil analisis nilai displacement seismik Lead Rubber Bearing pada Jembatan SBG di Kabupaten Brebes dan Jembatan SBG-SIG di Kota Solo berdasarkan arah X (longitudinal), arah Y (lateral) dan arah Z (vertikal) dari permodelan Jembatan Steel Box Girder menggunakan software MIDAS Civil dan hasil Factory Production Control (FPC) Test berupa nilai displacement maksimum. Pada Sampel 1P. struktur SBG dengan bentang 110 meter dan kelas situs SE (tanah lunak) memiliki nilai displacement seismik hasil permodelan MIDAS Civil pada arah X (longitudinal) adalah 8,68 mm, arah Y (lateral) adalah 0,6 mm dan arah Z (vertikal) adalah 121,45 mm. Pada Sampel 2J, struktur SBG dengan bentang 40 meter dan kelas situs SC (tanah keras, sangat padat, dan batuan lunak) memiliki nilai displacement seismik hasil permodelan MIDAS Civil pada arah X (longitudinal) adalah 6,23 mm, arah Y (lateral) adalah 6,5 mm dan arah Z (vertikal) adalah 92,53 mm. Pada Sampel 3J, struktur SBG dengan bentang 60 meter dan kelas situs SC (tanah keras, sangat padat, dan batuan lunak) memiliki nilai displacement seismik hasil permodelan MIDAS Civil pada arah X (longitudinal) adalah 6,90 mm, arah Y (lateral) adalah 0,27 mm dan arah Z (vertikal) adalah 110,72 mm. Nilai displacement pada pembacaan grafik hasil Factory Production Control (FPC) Test merupakan rentang nilai (range) yang dapat digunakan sebagai acuan dalam menentukan Lead Rubber Bearing laik fungsi atau tidak. Nilai displacement tersebut disajikan setelah dikalibrasi dengan faktor-faktor correction dan menghasilkan batas maksimum positif dan batas maksimum negatif dari sebuah *Lead* Rubber Bearing. Pengujian dalam Factory (FPC) Production Control Test akan mewakilkan nilai-nilai yang ada di lapangan. Pada analisis FPC Test, nilai displacement seismik pada Sampel 1P memiliki rentang dari 141,01 mm sampai -141,01 mm. Pada Sampel 2J memiliki rentang nilai *displacement* seismik dari 134,01 mm sampai -134,01 mm. Rentang nilai displacement seismik pada Sampel 3 yaitu dari 136,00 mm sampai -136,01 mm.
- 3. Nilai *displacement* yang ditinjau dari arah X (longitudinal), arah Y (lateral) dan arah Z (vertikal) menggunakan permodelan MIDAS Civil berada dalam rentang nilai displacement seismik yang diisyaratkan *Factory Production Control* (FPC) Test atau nilai berada dalam batas aman.

SARAN

- 1. Faktor-faktor yang memengaruhi nilai displacement pada Lead Rubber Bearing di penelitian ini hanya difokuskan pada LRB yang berada di bawah struktur bagian atas jembatan (superstruktur). Hasil identifikasi akan berbeda apabila mempertimbangkan kondisi struktur bagian bawah jembatan (substruktur).
- Nilai displacement apabila ditinjau berdasarkan faktor seismik merupakan nilai displacement yang diperoleh dari arah X (longitudinal), arah Y (lateral) dan arah Z (vertikal). Hal tersebut karena pada saat terjadi gempa bumi, jembatan yang terkena pengaruh seismik akan bergerak ke segala arah sehingga harus diperhitungkan.
- 3. Diharapkan penelitian berikutnya dilakukan dengan variasi permodelan lain sehingga hasil yang didapatkan lebih akurat. Jenis jembatan dan tipe *Lead Rubber Bearing* juga lebih divariasikan agar penelitian sejenis bisa terus dikembangkan.

UCAPAN TERIMA KASIH

Penulis ucapkan terima kasih kepada Dosen Pembimbing, PT. Bukaka Teknik Utama Tbk., dan semua pihak yang telah membantu dan berkontribusi dalam penyelesaian karya ini.

DAFTAR PUSTAKA

- [1] T. J. Ginting, "Studi Parametrik Efektifitas Lead Rubber Bearing (LRB) pada Jembatan Beton Bentang Menerus," *Inst. Teknol. Bandung*, no. Tesis Program Master, 2019, [Online]. Available: https://digilib.itb.ac.id/index.php/gdl/vi ew/39698.
- [2] I. Manalu, "Studi Penggunaan Lead Rubber Bearing Sebagai Base Isolator Dengan Model Jembatan Kutai Kartanegara Pada Zona Zona Gempa Di Indonesia," 2015, [Online]. Available: http://repository.its.ac.id/63123/.
- [3] C. P. Heins, "Steel Box Girder Bridges -Design Guides & Methods.," *Eng. J.*, vol. 20, no. 4, pp. 121–142, 1983.
- [4] Bukaka Teknik Utama, "*Lead Rubber Bearing* pada Retrofikasi Jalan Layang di Indonesia : Jalan Layang Ir. Wiyoto Wiyono," 2020.

- [5] S. Barone, M. Sartori, T. Suryadi, and I. Zivanovic, "Lead Rubber Bearings: a Prominent Application of En 15129:2009 Anti-Seismic Devices Standard Beyond Europe," World Conf. Seism. Isol. Energy Dissipation Act. Vib. Control Struct. Proc., no. July, 2021, doi: 10.37153/2686-7974-2019-16-73-81.
- [6] A. V. Indra, R. Suryanita, and Ismeddiyanto, "Analisis Respons Dinamik Jembatan Rangka Baja Menggunakan Sistem Seismic Isolation Lead Rubber Bearing (LRB)," *Jom FTEKNIK*, vol. 3, no. 1, pp. 1–12, 2016.
- [7] M. C. Kunde and R. S. Jangid, "Seismic behavior of isolated bridges: A state of the art review," *Electron. J. Struct. Eng.*, vol. 3, no. 2, pp. 140–170, 2003.
- [8] Badan Standarisasi Nasional Indonesia, "SNI 1725:2016 Pembebanan untuk Jembatan," *Badan Standarisasi Nas.*, pp. 1– 67, 2016.
- [9] American Association of State Highway and Transportation Officials, *Guide Specification for Seismic Isolation Design*, vol. 4, no. Seismic. 2014.
- [10] Badan Standardisasi Nasional Indonesia, "Perencanaan Jembatan Terhadap Beban Gempa SNI 2833," pp. 1–70, 2016.